如何给数据打标签?

来源:码工小熊 作者:爱学习的小熊妹

什么是标签?

标签是对事物的概要性描述。就像商品标签上会写商品分类、主要原料一样。虽然一件商品有很多属性,但是我们只通过几个有限的标签,就能锁定我们想要的商品,这就是标签的作用。

有哪些标签?

从复杂程度上看,标签有四类:

  • 事实型标签:如商品的颜色、人的性别。这些是事实描述,可以直接拿来用

  • 规则型标签:如把“消费 1000 元以上”定义为:高消费群体。规则类标签,往往是基于一个数据指标,然后根据特定的规则进行分类

  • 复合型标签:如“高富帅”,就是一个典型复合型标签,它基于 N 个指标,进行综合计算,最后得出一个标签结果

  • 预测型标签:注意以上三类标签,用的都是已经发生的数据进行计算。预测型标签则是对未来情况的估计。可以用算法进行预测,也能人工预测。比如对用户进行分类,然后打个标签“预计流失用户”,就是指该用户会在未来 XX 时间内流失掉

这四类标签的复杂程度是不同的:预测型>复合型>规则型>事实型,相应的打标签的难度也不一样。

要怎么打标签?

打标签是个通俗说法,它指的是生产标签的过程。如果是简单的事实型标签,则直接拖过来用即可。其他三类,都得经过打标签的动作,越复杂的标签,生产起来越麻烦。

打标签有四个标准步骤。

  • 明确打标签的对象

  • 明确标签的用途

  • 明确标签规则

  • 明确标签的名称

举个最简单的例子:小妹还没有男朋友,想找个高富帅。

高富帅,就是个复合型标签,按四步走:

  1. 打标签对象:男人,活的

  2. 明确用途:选个潜在蓝盆友

  3. 明确规则:这是最复杂的一步,因为高富帅有三个维度,需要逐个维度单独讲清楚,然后再想办法综合。

    这样,先对三个维度各自打标签,再进行综合(如下图):

image.png

综合的方法,可以用优先级排序,或者做综合评分(如下图):

image.png

  1. 看起来综合评分似乎更科学,但实际决策时候并不是!比如我,看到帅哥就走不动道了,管他富不富呢。综合评分有可能选出来平庸的个体,这个要注意哦。

    • ,相对容易,看身高然后给个标准即可

    • ,也相对容易,看到照片自己觉得还行,手工打个标签即可

    • ,就很纠结了,有的人挣得多,可也花得多呀。不能光看收入,还得看负债

  2. 明确标签的名称:高富帅、非高富帅

搞掂!

可以看出,在生产标签的过程中,明确规则是最麻烦的一步。但实际上,麻烦不限于此。

打标签,难在哪?

看完上边的小例子,很多人会觉得:“打标签很简单呀,我一个上午能打 1000 个出来”。如果只是往数据库里添加 1000 个新字段,确实很容易。

但是,这 1000 个字段:

  • 有几个能被业务部门用起来?

  • 用完以后能提升业务表现?

  • 还有多少业务想要的标签,没有在其中?

这才是真正的难题。

反正我是见过,供应商傻乎乎的打了几百个标签,结果除了上线汇报 ppt 外,业务部门看都不看一眼的,更不要提用了。

一个好的标签,一定是:

  • 业务高频使用

  • 指向明确动作

  • 产生明显效果

就像小妹一听人介绍“高富帅”,就会顶着周五熬夜煲剧的黑眼圈起床化妆俩小时出门一样。这才是高频使用,有驱动力,产生明显效果的标签!

肯定有小伙伴问:业务上有没有这种标签?

当然有,比如我个人很喜欢的:促销敏感型用户(是/否)这个标签。专门用来区分:没有促销不买,有促销高概率买的薅羊毛体质用户。拿来解释日常消费转化率,事前预计活动效果,事后复盘达成情况,都很好用。

实际业务问题经常很复杂,很难用一个标签描述情况,因此也会需要围绕一个业务场景。构造若干个标签,形成标签体系,驱动业务工作。


相关文档推荐

观远ChatBI基于LLM的场景化问答式BI.PDF

1739349043  4.41MB 9页 积分4

分析型BI+AI 产品创新探索.PDF

1738713531 樊帆 26.21MB 13页 积分5

大模型+数据智能分析应用发展趋势及标准化工作.PDF

1738713468 韩晓璐 7.14MB 24页 积分4

基于LLM的智能数据分析平台在腾讯的落地实践.PDF

1738713220 谭云志 5.29MB 22页 积分6

平安人寿大模型智能化报表chatBI.PDF

1738713178 刘行行 4.74MB 24页 积分6

火花思维数据分析体系建设和实战.PDF

1737424874 冯俊晨 2.8MB 17页 积分5

StarRocks在电商数据分析场景的实践.PDF

1737423810 王新春 2.2MB 15页 积分5

B站一站式大数据集群管理平台.PDF

1737421412 刘明刚 1.37MB 30页 积分6

LLM和Agent助力下的数据分析智能化转型研究与实践.PDF

1737365070 谢苑珍 4.52MB 54页 积分6

BI+AI撬动千亿级数据的智能洞察实践.PDF

1736901563 徐冰泉 8.26MB 29页 积分5

相关文章推荐