01
结构规范及写作
报告常用结构:
1. 架构清晰、主次分明
数据分析报告要有一个清晰的架构,层次分明能降低阅读成本,有助于信息的传达。虽然不同类型的分析报告有其适用的呈现方式,但总的来说作为议论文的一种,大部分的分析报告还是适用总-分-(总) 的结构。
推荐学习金字塔原理,中心思想明确,结论先行,以上统下,归类分组,逻辑递进。行文结构先重要后次要,先全局后细节,先结论后原因,先结果后过程。对于不太重要的内容点到即止,舍弃细枝末节与主题不相关的东西。
2. 核心结论先行、有逻辑有依据
结论求精不求多。大部分情况下,数据分析是为了发现问题,一份分析报告如果能有一个最重要的结论就已经达到目的。精简的结论能降低阅读者的阅读门槛,相反太繁琐、有问题的结论100个=0。报告要围绕分析的背景和目的以及要解决的问题,给出明确的答案和清晰的结论;相反,结论或主题太多会让人不知所云,不知道要表达什么。
分析结论一定要基于紧密严谨的数据分析推导过程,尽量不要有猜测性的结论,太主观的结论就会失去说服力,一个连自己都没有把握的结论千万不要在报告里误导别人。
但实际中,部分合理的猜测找不到直观可行的验证,在给出猜测性结论的时候,一定是基于合理的、有部分验证依据前提下,谨慎地给出结论,并且说明是猜测。如果在条件允许的前提下可以通过调研/回访的方式进行论证。
不回避 “不良结论” 。在数据准确、推导合理的基础上,发现产品或业务问题并直击痛点,这其实是数据分析的一大价值所在。
3. 结合实际业务、建议合理
基于分析结论,要有针对性的建议或者提出详细解决方案,那么如何写建议呢?
首先,要搞清给谁提建议。不同的目标对象所处的位置不同,看问题的角度就不一样,比如高层更关注方向,分析报告需要提供业务的深度洞察和指出潜在机会点,中层及员工关注具体策略,基于分析结论能通过哪些具体措施去改善现状。
其次,要结合业务实际情况提建议。虽然建议是以数据分析为基础提出的,但仅从数据的角度去考虑就容易受到局限、甚至走入脱离业务忽略行业环境的误区,造成建议提了不如不提的结果。因此提出建议,一定要基于对业务的深刻了解和对实际情况的充分考虑。
再进一步,如果可以给出这个建议实施后的收益,下单转化提升多少、交易提升多少、能节省多少成本等,把价值点直接传递给阅读对象。
上面讲了报告的写作原则,举个例子,参考艾瑞网,《留存与未来-疫情背后的互联网发展趋势报告》:
Tips:尝试站在读者的角度去写分析报告,内容通俗易懂,用语规范谨慎。如果汇报对象不是该领域的专家,就要避免使用太多晦涩难懂的词句,同时报告中使用的名词术语一定要规范,要与既定的标准(如公司指标规范)以及业内公认的术语一致。
02
数据使用及图表
数据分析往往是80%的数据处理,20%的分析。大部分时候,收集和处理数据确实会占据很多时间,最后才在正确数据的基础上做分析,既然一切都是为了找到正确的结论,那么保证数据准确就显得格外重要,否则一切努力都是误导别人。
1. 分析需要基于可靠的数据源
用于鉴别信息/数据的可靠性,主要有四种方法:同类对比、狭义/广义比对、相关对比和演绎归谬。
Tips:以上都是常用的方法论,最核心是足够了解业务,对关键指标数据情况了然于心,那么对数据准确性的判断水到渠成。对此,建议是每日观测核心业务的数据情况,并分析波动原因,培养业务理解力和数据敏感度。
2. 尽量图表化,提高可读性
用图表代替大量堆砌的数字,有助于阅读者更形象直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从。
让图表五脏俱全,一张图必须包含完整的元素,才能让阅读者一目了然。标题、图例、单位、脚注、资料来源这些图表元素就好比图表的五脏六腑。
要注意的条条框框。
常见的图表类型选择:
图表使用Tips:
折线图:选用的线型要相对粗些,线条一般不超过5条,不使用倾斜的标签,纵坐标轴一般刻度从0开始。预测值的线条线型改为虚线。
柱形图:同一数据序列使用相同的颜色。不使用倾斜的标签,纵坐标轴一般刻度从0开始。一般来说,柱形图最好添加数据标签,如果添加了数据标签,可以删除纵坐标刻度线和网格线。
条形图:同一数据序列使用相同的颜色。不使用倾斜的标签,最好添加数据标签,尽量让数据由大到小排列,方便阅读。
饼图:饼图使用场景相对少,如需使用,注意以下事项:把数据从12点钟的位置开始排列,最重要的成分紧靠12点钟的位置。数据项不要太多,保持在6项以内,不使用爆炸式的饼图分离。不过可以将某一片的扇区分离出来,前提是你希望强调这片扇区。饼图不使用图例。不使用3D效果。当扇区使用颜色填充时,推荐使用白色的边框线,具有较好的切割感。
03
常见数据分析误区
“用数据说话”,已经成为一种流行语。
在很多人的心里,数据就代表着科学,科学就意味着真相。“数据不会骗人”,也成了说服别人时常用的口头禅,事实果真如此吗?让我们来谈谈那些常见的误区。
1. 控制变量谬误
在做A/B测试时没有控制好变量,导致测试结果不能反映实验结果。或者在进行数据对比时,两个指标没有可比性。举个例子,为测试不同营销时间点对下的转化的影响,但A实验使用短信营销、B实验使用电话营销,未控制变量(营销方式),导致实验无法得出结论。
2. 样本谬误
统计学的基础理论基石之一就是大数定律,只有当数据量达到一定程度后,才能反映出特定的规律。如果出现样本量极少的情况,建议把时间线拉长,获得足量的样本。或者将不重要的限定条件去掉,增加样本数。
统计学的另一大理论基石是中心极限定理。简单描述就是,总体样本中,任意一个群体样本的平均值,都会围绕在这个群体的整体平均值周围。
举个例子,在应用升级期间,衡量登录用户数、交易用户数等指标,来判断用户对新版本的喜欢是否优于老版本。听上去非常合理,但这里实际就隐藏了选择性偏见,因为新版本发布时,第一批升级上来的用户往往就是最活跃的用户,往往这批用户的指标较好,但不代表新版本更好。
这种数据的破坏性比较大,可能得出错误的结论。通常我们会采用数据校验的手段,屏蔽掉校验失败的数据。同时,在分析具体业务时,也要针对特定业务,对所使用的数据进行合理性限定,过滤掉异常离群值,来确保拥有比较好的数据质量。
3. 因果相关谬误
会误把相关当因果,忽略中介变量。比如,有人发现雪糕的销量和河溪溺死的儿童数量呈明显相关,就下令削减雪糕销量。其实可能只是因为这两者都是发生在天气炎热的夏天。天气炎热,购买雪糕的人就越多,而去河里游泳的人也显著增多。
4. 辛普森悖论
简单来说,就是在两个相差较多的分组数据相加时,在分组比较中都占优势的一方,会在总评中反而是失势的一方。
5. 个人认知谬误
主观臆断、经验当事实、个体当整体、特征当全貌、眼见当事实。
举个主观臆断的例子:某个产品A页面到B页面的转化率30%,直接判断为很低,推导出可以提高到75%。但实际类似产品或者用户行为决定页面的转化率就只有这么高,得出一个错误的结论。
标准至关重要,数据+标准=判断。有了判断才能深入分析。通过分组对比找标准(象限法、多维法、二八法、对比法),有标准通过分析对比,找到“好/坏”的点。
统计学规律和理论不会错,犯错的是使用它的人。因此,我们在进行数据分析时,一定要格外小心,错误的数据,披上科学的外衣,就很难分辨了。
CIO之家 www.ciozj.com 公众号:imciow