企业构建AI大模型应用的步骤流程与关键问题解析

来源:少军的AI空间 作者:少军叨叨

构建企业级AI大模型驱动的应用系统是一项跨越技术与业务边界的综合性任务,它不仅考验着企业在业务领域知识的深度,也挑战着企业基于AI大模型构建应用的技术高度。这一过程要求业务专家与AI大模型专家紧密协作,共同确保通过AI大模型的赋能,实现业务价值的倍增效应。



基于实践经验总结,可以系统化地将AI大模型应用的构建流程划分为五个核心步骤:

1)需求场景的精确定义

2)大模型的科学选型

3)大模型性能效果的强化调优

4)大模型的部署与运行维护,以及

5)AI应用的无缝集成。

针对这一过程中的每一关键环节,本文将深入剖析企业所面临的策略抉择与潜在难题,旨在为那些意图搭乘AI大模型发展浪潮、加速数智化转型的企业提供一份具有可操作性的行动指南。


image.png














一、明确需求场景:精确制导,确保目标清晰

明确需求场景是项目起点,也是项目成功的基石。AI大模型专家需与业务团队紧密协作,细致剖析业务痛点,识别AI可解决的关键问题,同时考虑法规遵从与资源约束,为项目定下清晰且实际的目标。

  • 模糊不清的需求目标可能导致资源浪费和项目延期。企业应首先明确AI应用的场景,如是否需要处理文本生成、情感分析、图片理解和生成等特定任务,这直接影响到后续的模型选择与技术路线设计。

  • 未事先充分评估引发潜在风险。例如,在国内,对外提供服务的大模型及大模型应用,均需要经过安全评测备案。这就要求选型时慎重考虑避免使用海外大模型,数据传输出境等风险,避免产生合规问题。

这一阶段明确需求场景和目标后,对后续指导模型选择、评估计算资源和预算、设计合理技术方案、识别安全合规要求、乃至管控部署和运维大模型应用路线都具有指导意义。也是企业自身需要重点思考的环节。



通常情况,建议需求目标从点开始再到面,先从单点AI大模型能力与现有应用的结合开始落地,逐步再考虑更深入更多场景的结合,最后再到基于AI Agent智能体思路重塑业务应用。


    二、大模型选型:平衡艺术,精准拿捏

    大模型选型阶段,AI大模型专家依据需求分析结果,在众多预训练模型中甄选,不仅考虑模型的性能与准确性,还要平衡计算效率、成本及安全性,选择与企业基础设施兼容性最优的解决方案。

    • 性能与成本的权衡:这点要求企业细致考察市面上现有的各类大模型。通过基准测试了解模型上限,结合实际预算和性能需求做出决策,同时考虑模型的长期维护成本。一般来说我们会有这么一个大模型选择三角形,从效果、性能、成本三方面平衡考虑。在选型路径上,建议首先用“最聪明”的基础大模型(比如千亿参数规模的通义千问max版本、多模态则为qwen_VL_max版)来做任务的上限效果测试验证,如果“最聪明”的大模型可以满足效果要求,再去考虑成本和性能问题,比如下调选一个小一点参数规模的大模型再测试,直到平衡满足企业综合需求。

    image.png












    • 安全与合规的考量:在国内尤为重要,涉及到大模型生成内容的安全可靠、大模型及应用的备案、数据出境限制等,建议选择符合要求的大模型。

    • AI工具链和生态系统支持,对于大模型的持续优化和功能拓展至关重要。强大的AI工具链和社区支持意味着更多的应用案例、工具和解决方案,有助于企业快速迭代升级。国外的社区比较出名是Huggingface,国内则为阿里云的Modelscope魔搭社区。


    三、增强调优大模型:精雕细琢,效能提升

    随后的增强调优步骤中,通过提示词工程、RAG、微调等方案策略,对选定的大模型进行优化,旨在提升其在特定场景下的表现效果与可靠性,确保大模型的输出贴合业务实际需要。

    • 提示词工程是指通过各种输入设计来引导模型行为给出回复。特点是轻量,易使用,模型强相关。提示词工程虽轻便易行,但也需要理解大模型特性,才能设计出高质量提示词,高效引导模型输出预期内容。

    • RAG主要结合外部知识数据,让大模型更可控的回答垂直/封闭领域问题。RAG依赖高质量外部数据,因此数据的准确性和时效性、数据检索和增强过程中的优化技巧是关键,处理不好会影响大模型的输出质量。

    • 微调调优则是通过小规模训练来优化模型在特定任务上的表现。特点是适配特定任务、高准确,但复杂且高成本。同时微调调优过程具有一定的不确定性,处理不当会出现过拟合、甚至影响原有基模能力。

    针对当前三种主流优化方案,这里简单补充做个说明。经常有人问上述三种方案核心区别是什么,怎么选?我们先回答是什么的问题。如下图所示,本质上大模型和程序一样,都是根据外部输入,然后执行后给出输出结果。程序=数据结构+算法,简单的对应过来,大模型=模型结构+参数权重。所以说,提示词工程,本质就是通过巧妙设计输入,使之更好适配大模型中的模型结构,从而获得更好的输出结果;微调调优,则是基于给定的数据集做训练,来优化更新大模型在预训练时已经固定好的参数权重,让后续的输入能在该行业领域的任务上得到更好的输出结果。

    image.png











    接着看“怎么选”的问题。对大模型的增强调优,在实际使用过程中,并非大家所想的按提示词工程->RAG->微调调优这种直线路径推进的。而是需要结合提示词工程、RAG和微调调优等特点,反复尝试,螺旋推进落地。下图为OpenAI专家给出的一个大模型调优建议路径。

    image.png












    微调调优后的模型务必要做好模型评测。模型评测不仅验证了模型在特定任务上的优化效果,保证了输出质量达到预期标准,还通过全面评估模型性能,揭示潜在的偏见或不足,为进一步的迭代优化提供了数据支持。具体如何评测就不再赘述,可网上参考相关文章了解。


    在增强调优大模型这个环节里,数据集是非常重要的,不管是训练数据集还是评测数据集。这是因为高质量的数据(包括数据的多样性、质量和规模等)深刻的影响着大模型能力和企业AI应用价值倍增量级。经常很多企业在问,我们欠缺数据或者没有高质量数据时,如何提升大模型应用效果。碰到这种情况,除了建议企业可以向外尝试多种数据合作方式,也可先直接用基模或现成行业领域专属大模型,同时着手规划建设自己的企业数据平台。

    四、大模型部署与运行:灵活应变,确保稳定

    一旦模型优化成熟,便进入部署与运行阶段,这要求专家精心设计部署架构,无论是云端托管、边缘计算还是本地部署,均需确保系统的稳定运行、弹性伸缩及高效运维,同时建立监控机制以应对潜在故障。大模型部署方式应根据企业的业务场景目标决定。根据模型参数规格大小不同,可以部署到终端智能设备、IDC机房以及云上。云平台一般也根据不同场景提供更多的大模型环境部署和运行服务。如下图所示。

    image.png












    • 推荐大部分企业优先考虑直接调用MaaS API服务的方式(类似阿里云百炼模型服务平台)。

    • 企业有开源大模型私有化部署需求的,首先考虑基于阿里云人工智能平台PAI做整体开发部署提供模型服务。如企业有AI团队及技术积累,考虑自建的话,可推荐基于阿里云GPU云服务器构建。从成本和运行维护投入等方面考虑,原则上不建议纯线下IDC自建智算资源和大模型服务。


    五、AI应用集成:深度融合,释放潜能

    最后一个环节是AI应用集成,即将完成增强调优后的大模型部署运行后,无缝集成融入企业现有的数智化生态系统中,无论是通过MaaS API接口、插件、流程编排、Agent还是构建全新的用户界面,目标都是最大化大模型的能力和价值,提升用户体验,促进企业业务流程智能化升级,从而驱动企业创新与竞争力的飞跃。



















    相关文档推荐

    人才地图的绘制与应用.PPTX

    1749518692  0.74MB 0页 积分5

    Deepseek生态系统的构建与未来.PPTX

    1749466250 蔡华法 1.08MB 10页 积分5

    企业驶入人工智能深水区的三段旅程.PDF

    1749452119 张鑫 7.49MB 22页 积分5

    数字化赋能制造业企业出海.PDF

    1749436999  2.5MB 27页 积分5

    TRTC实时对话式AI解决方案.PDF

    1748998796  1.99MB 15页 积分5

    AI语音交互软硬件的实践路径与场景创新.PDF

    1748998764 曾随城 2.29MB 14页 积分4

    2025 人工智能赋能教育发展研究报告.PDF

    1748909113  4.65MB 62页 积分5

    人工智能引爆新质生产力革命.PDF

    1748868949  15.6MB 150页 积分6

    千卡级分布式集群上的视觉多模态大模型落地实践.PDF

    1748784474 王兆雄 5.47MB 27页 积分6

    相关文章推荐