“大数据”仅仅是一个数据应用先进方法,什么4V非结构化处理,非结构化处理、数据挖掘、人工智能,这些N年前就有了好吧?有人说是概念炒作,我认为只说对了一小半,原因如下:
1、传统BI过于注重决策支持,没有形成数据应用闭环,这是传统BI没有解决的缺陷,而大数据提供了这个契机。从我对传统BI在过去和现在应用的了解,传统BI的应用重心99%仍然在直接和间接的决策支持,如果你和做过多年传统BI,且不了解大数据的同学问,数据分析可以直接在系统中调用,智能判断,这个你们做么?基本会回答不做,因为这不是项目范围,还有人说,这个咋做?
2、对最细粒度维度的挖掘,可以实现自动化智能的效果,而传统BI不行。大数据时代重新将技术从实施时候的“厂商”,拉回到实施人员,使得很多想象空间完全打开。如果你观察传统BI的同学,一般是IOS等几大厂商的产品(包括数据挖掘产品)和SQL足够熟悉,这种技术环境造就的团队,已经没有技术实力来实现通过多个系统接口,将数据历史数据+实时收集=〉数据挖掘=〉系统调用数据挖掘结论=〉直接影响用户体验=〉自动评估效果这样的闭环数据应用中。
例 如你发现某些特定用户来写错送货地址,传统BI能做到的是,发现有部分用户写错地址,原因是换地方了,但是按业务经理的说法,我也知道这个事情啊,写错了 就只能人工解决啊,分析出来有啥用?于是大数据可以根据写错地址的原因进行分析,可以发现有搬家、换租地方(换城市)等,那么可以根据(时间+IP)等组 合用户信息区别来自动提醒,直接解决了问题,而不是分析出一个结论,把困难交给了相关的业务经理。
3、一定得全息、全量问题发现才能算大数据,或者才能实施应用么?持这种观点的同学永远想象不到,互联网时代是能解决多少问题就有多少价值的理念。
就如上面的案例,你可以说不能解决全部填错地址的问题,但是当你发现你这样做已经解决了很多消费者的问题,挽回多方损失的时候,你就会觉得,这事还真值得去做。等你搜集到全息数据,黄花菜都凉了,而问题还不一定能解决,因为你重点是纠结这个数据到底全还是不全啊
结论:
“大数据”仅仅是一个数据应用先进方法,它的核心不是全息数据,也不是海量非结构化、结构化数据混合处理,而是是否打开了你应用数据的心扉,你是否可以用这个先进武器,解决你之前解决不了,甚至想都不敢想的问题。
CIO之家 www.ciozj.com 公众号:imciow