大数据三问大数据热的冷思考

来源:e-works 作者:鑫磊

一问:大数据的特点在“大”,是否越大越好?


回答是不一定。


人类对世界的认识,首先是感知信息。但问题在于,人类许多方面的感知能力却不如普通动物,比如人的嗅觉不如狗,听觉不如猫,视觉不如鹰等等。


难道高级动物竟然比不上低等动物?显然不是。奥秘在于人类相对普通动物而言,长处在思维。思维之花乃是生物进化的杰作,人类凭借思维之利器,便可以通过科学技术手段,根据需要延长自身的器官,最后实现各方面能力都远在一般动物之上。在此过程中,关键是计算机技术的发展,得以替代人的部分逻辑思维,能够进行大规模数据的快速处理,从而使得我们在面对大数据时,不至于心怀畏惧。


20世纪以来科技领域看起来硕果累累,但真正具有颠覆性意义的发现却如凤毛麟角,甚至不及19世纪。问题何在?数字化的数据固然有利于从中发现规律,但这类数据在整个大数据库中所占份额极小,何况还有一个鱼龙混杂问题。至于那些尚未数字化的数据,尤其是那些似是而非、众说纷纭的数据,显然并非越多越好。


事实上,就人类认识而言,也有减材加工与增材加工两种方式。毛泽东在《实践论》中所说的去粗取精、去伪存真、由此及彼、由表及里的认识过程,其实就是讲的真理性认识有增有减的过程。当年第谷观察天象,所做工作就是增加数据;而开普勒总结天体运行规律,所做工作则属删繁就简。如果说数据的增加意味着真理性认识的增加,那么数据的减少则意味着真理性认识的深化和升华,何尝不值得我们同样为之喝彩?



二问: 大数据 的亮点在“数”,是否万物皆数?


回答是不可能。


数字的发明,是人类抽象思维能力发展的产物。而发现数字之间的某些关联,曾经更使人类欣喜若狂,毕达哥拉斯甚至据此作出了“万物皆数”的断言。大数据之所以吸引人们眼球,噱头就在“数”上,似乎一切化归于数,就可万事大吉,适合数字化生存的时代要求了。


应该看到,世界在演化的进程中,特别是生命体和人类社会诞生后,正负二分的表征法就变得越来越不适用了,无论是模拟仿真技术的兴起,还是复杂化方法的运用,都说明这种建立在非此即彼的认识论基础上的进位法,其实是形而上学思维方式在信息时代的反映。


由此可见,所谓的数据其实有两类,一类是可以实现数字化的数据,人类可以轻而易举地将它的处理任务付之电脑,进而从中发现规律、把握规律。而另一类不可数字化或者说很难实现数字化的数据,则还是必须依靠人脑的判断与解读。1948年美国的“驴象”之争中,盖洛普的配额抽样方法以及其他民意调查机构之所以遭遇“滑铁卢惨败”,就是因为过于迷信数据,而这种建立在数字基础上的所谓“科学”方法,其实经实践检验后被发现并不科学。过去这些年来,定量评估在世界各地盛行,人们动辄以各式各类指标体系肢解复杂事物和系统,最后闹出许多笑话,正说明现代的数字崇拜照样是此路不通。


三问:大数据的基点在“据”,是否据实逼真?


回答是不见得。


信息技术的推广应用同样是一把双刃剑,它在为人们提供无限便利的同时,也为数据造假及其传播洞开了方便之门。据《环球科学》2014年12月载文,生物科技风投资本家有一个经验法则:一半公开发表的科研成果都无法复制,这还是最乐观的估计。2012年,生物科技公司安进发现,在关于癌症研究的53项重大成果中,只有6项可被复制。稍早前,拜耳制药公司的一个团队重新开展了67篇有重要影响的论文所做过的实验,最终成功的却只有四分之一。本世纪最初10年,应用于临床的研究专利大约有8万份被撤销,因为它们都是错误的。


面对如此庞大的虚假数据,你还会相信大数据即未来石油的神话吗?美国科学计量学家普赖斯曾在上世纪50年代就得出科学知识呈指数增长的结论,其依据是各国期刊文献的数量增长。此后,有关知识爆炸的说法甚嚣尘上。现在回头看,普赖斯的判断未免草率,因为期刊文献数量与人类知识量显然是不能画等号的,否则就会得出撤销某些期刊就是限制知识增长的荒唐结论。


总之,科学的发展在深刻改变人类生产生活方式的同时,也制造了许多令人目不暇接的神话。当泥沙俱下且呈雪崩式的大数据袭来时,我们更应保持一个清醒的头脑,用中国的古训来说,就是要防止以目废心。


相关文档推荐

基于数据挖掘的前端性能保障.PDF

4236133513 青墨 2.81MB 39页 积分6

另类数据挖掘在风控中的应用研究.PDF

2232971001 张海鹏 2.22MB 32页 积分5

教育产品中的图数据挖掘应用.PDF

422135840 李波 3.72MB 30页 积分5

数据挖掘与用户画像方案.PPTX

2208471734  2.29MB 58页 积分5

基于数据挖掘技术的精确智能营销.PPT

2208471725  2.48MB 69页 积分4

基于用户画像的大数据挖掘实践.PDF

2208471716 杨步涛 2.42MB 30页 积分4

数据挖掘彩电项目总报告.PPT

2208471600  1.7MB 36页 积分4

数据挖掘价值智慧预测未来.PDF

2208471083  0.88MB 17页 积分4

相关文章推荐