数据分析第一步|做好数据埋点

来源:36大数据 作者:网友

做产品的同学在产品上线后经常离不开一个词,数据分析。那么要如何进行数据分析呢?不妨先问自己这么几个问题。

你要分析什么问题?是找问题还是验证?

关于这些问题你需要哪些数据?

这些数据从哪里来?

要怎么解决这些问题呢?答案是数据埋点。首先通过产品定位及目标来确定自己需要哪些数据,其次通过在产品各个流程环节中设置数据埋点,最后,当用户使用产品时,后台就能源源不断地接收到数据了。

那么,问题又来了。如何做好数据分析的第一步,数据埋点呢?还是从三个问题来回答

1.数据埋点是什么?

初级的数据埋点:在产品流程关键部位植相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。

中级的数据埋点:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。

高级的数据埋点:与研发及数据分析师团队合作,通过数据埋点还原出用户画像及用户行为,建立数据分析后台,通过数据分析、优化产品。

2.为什么要做数据埋点?

一个简单的逻辑:你不做数据埋点,你就做不了数据分析。你不做数据分析,你就会不知道产品上线情况。你不知道产品上线情况,你产品就会做差。你产品做差,你的业绩就会不好。你业绩不好你就会被辞,你被辞就会没钱。你没钱就会去睡马路。你睡马路你就可能会被车撞,你被车撞就会…

所以为了不被车撞,一定要做好数据埋点!

3.怎么做好数据埋点?

数据埋点

(1)数据埋点的内容

数据埋点可以分为产品内部埋点和市场埋点,内部埋点通常分析用户使用产品的行为及流程,提升用户体验。市场埋点分析该产品在市场上的表现及用户使用场景,如产品在不同市场和地域的下载量,不同地域人群使用时间等等。

产品流程通常分为主干流程和分支流程,所以相应的数据埋点可以分为主干埋点和分支埋点,数据埋点通常不会一步搞定,在产品的第一次上线时通常会埋以下几个点:PC&Web端会统计产品的PV/UV,注册量,主要流程页面之间的转化率、日活人数等等。而移动端还要统计产品在Appstore,各大安卓市场的下载量。

第二次埋点会根据产品目标及上线后的问题进行分析。比如,当你发现产品首页的UV很高, 注册量却非常低,你就需要分析出用户在首页的行为,如30%的用户退出了产品,60%的用户进入了注册页,但只有1%的用户注册了该产品。这也就意味着,注册流程可能出现了问题,需要进一步细化注册各个流程,增加数据埋点,分析各个流程之间的转化率,找到产品出现的问题并解决。

具体到自己的产品,怎么数据埋点,就需要根据自己产品的任务流及产品目标来设计。这是一个由粗到细,优化迭代的过程。

(2)分析方法

任务流程分析法:根据产品设计的任务流,在任务流开始和结束处埋点,分析用户处理任务的情况。

页面转化分析法:统计相关页面的转化率及页面元素点击率,分析用户行为。

情景分析法:列出各种用户使用场景,自己或多人体验不同场景下产品的使用流程,寻找依据设立数据埋点,通过数据反馈验证用户行为。

(3)数据埋点的方式

目前主流的数据埋点方式分为两种:

第一种:自己公司研发在产品中注入代码统计,并搭建起相应的后台查询。

第二种:第三方统计工具,如友盟、百度移动、魔方、App Annie、talking data等。

最后,还是要说,数据埋点是产品数据分析的基础,也是个循序渐进的过程。基础的数据分析并不难,让数据来驱动产品迭代。


相关文档推荐

智能AI企业大数据中台建设方案.PDF

1744157579  10.51MB 69页 积分6

观远ChatBI基于LLM的场景化问答式BI.PDF

1739349043  4.41MB 9页 积分4

分析型BI+AI 产品创新探索.PDF

1738713531 樊帆 26.21MB 13页 积分5

大模型+数据智能分析应用发展趋势及标准化工作.PDF

1738713468 韩晓璐 7.14MB 24页 积分4

基于LLM的智能数据分析平台在腾讯的落地实践.PDF

1738713220 谭云志 5.29MB 22页 积分6

平安人寿大模型智能化报表chatBI.PDF

1738713178 刘行行 4.74MB 24页 积分6

腾讯大数据基于StarRocks的向量检索探索.PDF

1737425434 赵裕隆 3.48MB 34页 积分6

火花思维数据分析体系建设和实战.PDF

1737424874 冯俊晨 2.8MB 17页 积分5

StarRocks在电商数据分析场景的实践.PDF

1737423810 王新春 2.2MB 15页 积分5

B站一站式大数据集群管理平台.PDF

1737421412 刘明刚 1.37MB 30页 积分6

相关文章推荐