1 - 数学
线性代数、微积分
在整个机器学习过程中涉及大量矩阵运算和微积分导数的概念,因此建议初学者至少要有较为扎实的数学基础,对矩阵和微积分的概念了解比较清楚。否则在一些公式推导过程中会遇到较大障碍,而不断反复回来复习数学知识。
2 - 编程语言
Python/R/Java/Matlab
Python已经成为机器学习的第一语言,至于为什么知乎(https://www.zhihu.com/question/30105838?sort=created)中有非常不错的解释。众多机器学习的框架都支持Python API,所以学习机器学习,Python语言语法估计是绕不过去。
3 - Supervise learning
Linear regression
Logistic regression
Neural network
SVM
监督学习指的是人们给机器一大堆标记好的数据,比如一大堆照片,标记出哪些是猫的照片,哪些不是,然后让机器自己学习归纳出算法,可以判断出其他照片是否是猫。目前这个领域算法代表:Linear regression, Logistic regression, Neural network, SVM等等。
4 - Unsupervise learning
K-means
PCA
Anomaly detection
非监督学习指的就是人们给机器一大堆没有标记的数据,让机器可以对数据进行分类、检测异常等。
5 - Special topic
Recommend system
Large scale machine learning application
一些特殊算法,例如推荐系统。常用于购物网站,可以根据你的过往购物或评分情况,来向你推荐商品。
6 - Advice on machine learning
Bias/vairance
Regulation
Learning curve
Error analysis
Celling analysis
机器学习的建议,包含参数正则化、学习曲线、错误分析、调参等。
7 - Deep Learning
Neural Netwotk
深度学习是近期机器学习的一个热门分支,模拟人类大脑的思维方式,可以极大的提高正确率,是近来机器学习的一个非常大的突破。
8 - Tools/Framework
TensorFlow/Theano/Keras
很多大厂就开源了一些机器学习的框架,基于这些框架可以很容易搭建机器学习的平台。
推荐的学习资料:
Github上面有一份非常详尽的学习路径 (https://github.com/JustFollowUs/Machine-Learning)
我个人推荐的几个经典资料:
机器学习
Andrew NG的Coursera的机器学习入门 (https://www.coursera.org/learn/machine-learning):这个教程非常适合初学者,没有很高深的数学推导,Andrew也是业内大牛但非常谦逊,讲解非常浅显易懂。
周志平的机器学习(https://book.douban.com/subject/26708119/):号称最好的中文机器学习入门,这里有对这本书的详细评(https://www.zhihu.com/question/39945249)。
几本经典著作:An Introduction to Statistical Learning,Pattern Recognition and Machine Learning,The Elements of Statistical Learning
深度学习
Neural Networks and Deep Learning:Michael Nielsen用非常浅显易懂的方式介绍了神经网络和深度学习,并且提供了一个手写数字识别的例子,非常适合入门。
UFLDL Tutorial I UFLDL Tutorial II:Andrew NG主导的Deep Learning的学习资料,内容非常精炼,适合稍微有些基础的同学。
Deep Learning: 几位大神共同编写的关于深度学习的free book。
从人工智能到机器学习,再到最近大热的深度学习,人们已经在这个领域研究了数十年,现在虽然取得一定的突破,但是离真正的人工智能还有非常长的距离。而且人工智能一定要跳出学术界的研究框架,结合工业界的应用,从2016年可以看到大量的实际应用场景,例如自动驾驶、Apple Siri、Amazon Echo、谷歌翻译等等,我相信未来人工智能领域极有可能成为下一代颠覆性的技术革命。
CIO之家 www.ciozj.com 公众号:imciow