首页  ·  知识 ·  人工智能
机器学习工作职位需要的7项技能
网友  itweet  综合  编辑:Randolph   图片来源:网络
你是否准备去了解一些获得机器学习工作必备的技术了呢?一个优秀的求职者应该对以下各方面知识都有很深的理解:算法和数学应用,问题解决能力和分析技巧,概率统计和诸如Python/C++/R/Java等编程语

1. Python/C++/R/Java

如果你希望在机器学习领域获得一份工作,那么在某种程度上,你很可能必须学习这里所列出的所有编程语言。C++ 能够加速代码执行速度。R 在统计绘图方面十分出 色,Hadoop 是以 Java 为基础的,因此,你可能需要在 Java 中完成 Map/Reduce 算法。

2. Probability and Statistics(概率和统计)

概率和统计理论能够帮助你学习算法。很多常用的模型例如朴素贝叶斯、高斯混合模型和隐马尔可夫模型等,需要你有很好的概率和统计背景知识去理解。甚至你需要全身心的投入并且研究测度理论,同时需要理解一些统计指标,这些指标常作为模型评价标准,例如混淆矩阵,ROC曲线, P值等。

3. Applied Math and Algorithms(数学和算法)

对算法理论有相当深入的认识并且了解算法运行的机制, 能够帮助你对模型加以区分, 例如支持向量机模型 (译者注:支持向量机模型包括许多不同的核函数,核函数的不同, 具体模型的原理、应用和结论也不同)。 你需要理解一些数学方法, 例如梯度下降, 凸优化, 拉格朗格方法, 二次规划, 偏微分方程等类似的理论和方法。同时,你也需要熟悉求和运算[http://en.wikipedia.org/wiki/Summation]。

4. Distributed Computing(分布式计算)

大多数时候,机器学习需要处理大型的数据集。使用单机无法处理这些数据,因此,你需要通过集群进行分布式计算。像 Apache Hadoop 架构和 Amazon 的 EC2 云服务等项目能够使这一过程更加容易, 从而提高成本效益。

5. Expanding the Expertise in Unix Tools(使用Unix工具来拓宽你的专业知识)

你应该掌握专门为以下工作而设计的Unix命令或工具: cat, grep, nd, awk, sed, sort, cut, tr 等。由于所有这些处理过程都运行于基于linux平台的设备, 因此, 你需要熟悉这些工具。学习并很好的使用这些工具, 会使你的工作更加轻松。

6. Learning more about Advanced Signal Processing techniques(学习一些信号处理技术)

特征提取是机器学习最重根据部分之一。不同问题需要不同的解决方案, 你可以使用非常酷的高级信号处理算法,例如小波变换,剪切波变换,曲线波,轮廓波和 bandlets 变换等。学习时频分析技术,并用它来解决你的问题。如果你还不知道傅里 叶分析和卷积原理,你同样也需要学习这些知识。二进制码信号处理技术是解决问题 的重要方法。

7. Other skills

(a) 提升自己:你必须时刻保持与新技术的同步以应对将要到来的挑战。这也意 味着你必须注意以下几方面的最新动态:关于这些工具理论的变更日志和会议,算 法的研究论文、博客和会议视频等。(b) 大量阅读。阅读一些像 Google Map-Reduce, Google File System, Google Big Table,以及 e Unreasonable Effectiveness of Data 之类的 论文。此外,网上也有许多免费的机器学习书籍,你同样也应该读一读。
appy Machine Learning!


本文作者:网友 来源:itweet
CIO之家 www.ciozj.com 微信公众号:imciow
   
免责声明:本站转载此文章旨在分享信息,不代表对其内容的完全认同。文章来源已尽可能注明,若涉及版权问题,请及时与我们联系,我们将积极配合处理。同时,我们无法对文章内容的真实性、准确性及完整性进行完全保证,对于因文章内容而产生的任何后果,本账号不承担法律责任。转载仅出于传播目的,读者应自行对内容进行核实与判断。请谨慎参考文章信息,一切责任由读者自行承担。
延伸阅读