什么是(监督式)机器学习?简单来说,它的定义如下:
下面我们来了解一下机器学习的基本术语。
标签
标签是我们要预测的事物,即简单线性回归中的 y
变量。标签可以是小麦未来的价格、图片中显示的动物品种、音频剪辑的含义或任何事物。
特征
特征是输入变量,即简单线性回归中的 x
变量。简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征,按如下方式指定:
{x1,x2,…xN}
在垃圾邮件检测器示例中,特征可能包括:
电子邮件文本中的字词
发件人的地址
发送电子邮件的时段
电子邮件中包含“一种奇怪的把戏”这样的短语。
样本
样本是指数据的特定实例:x。(我们采用粗体 x 表示它是一个矢量。)我们将样本分为以下两类:
有标签样本同时包含特征和标签。即:
labeled examples: {features, label}: (x, y)
我们使用有标签样本来训练模型。在我们的垃圾邮件检测器示例中,有标签样本是用户明确标记为“垃圾邮件”或“非垃圾邮件”的各个电子邮件。
例如,下表显示了从包含加利福尼亚州房价信息的数据集中抽取的 5 个有标签样本:
housingMedianAge (特征) | totalRooms (特征) | totalBedrooms (特征) | medianHouseValue (标签) |
---|
15 | 5612 | 1283 | 66900 |
19 | 7650 | 1901 | 80100 |
17 | 720 | 174 | 85700 |
14 | 1501 | 337 | 73400 |
20 | 1454 | 326 | 65500 |
无标签样本包含特征,但不包含标签。即:
unlabeled examples: {features, ?}: (x, ?)
在使用有标签样本训练了我们的模型之后,我们会使用该模型来预测无标签样本的标签。在垃圾邮件检测器示例中,无标签样本是用户尚未添加标签的新电子邮件。
模型
模型定义了特征与标签之间的关系。例如,垃圾邮件检测模型可能会将某些特征与“垃圾邮件”紧密联系起来。我们来重点介绍一下模型生命周期的两个阶段:
回归与分类
回归模型可预测连续值。例如,回归模型做出的预测可回答如下问题:
加利福尼亚州一栋房产的价值是多少?
用户点击此广告的概率是多少?
分类模型可预测离散值。例如,分类模型做出的预测可回答如下问题:
某个指定电子邮件是垃圾邮件还是非垃圾邮件?
这是一张狗、猫还是仓鼠图片?
举例
监督式学习
假设您想开发一种监督式机器学习模型来预测指定的电子邮件是“垃圾邮件”还是“非垃圾邮件。下面的表述有助于理解
特征和标签
假设一家在线鞋店希望创建一种监督式机器学习模型,以便为用户提供合乎个人需求的鞋子推荐。也就是说,该模型会向小马推荐某些鞋子,而向小美推荐另外一些鞋子。下面表述有助于你理解 特种和标签
CIO之家 www.ciozj.com 公众号:imciow