数据智能的前世今生:技术融合与模式跃迁

来源:36氪 作者:李喆

数据智能是今年最火爆的名词,但数据智能究竟是什么?与大数据、人工智能有哪些区别?数据智能会产生哪些新的商业模式?数据智能和数据中台又是什么关系?

本文将从数据智能的发展历程开始,给出数据智能的定义和行业图谱,并对数据智能公司的商业模式进行分析,数据智能会产生什么新商业模式将是本文核心解决的问题。

01大数据的新篇章——数据智能

数据智能的标志是数据驱动决策,让机器具备推理等认知能力,大数据能够指导决策。同时完成了业务数据化进程,开始进入到业务智能化,依靠数据去改变业务。

image.png

从2013年至今,大数据行业经历了四个发展阶段,代表了企业对大数据的认知和需求,也带动起一批批大数据公司。

2013年,企业已经开始认知到数据价值,金融、电信、公安等行业开始建设大数据平台,收集并存储企业业务产生的数据。同时,金融等行业开始大量购买外部数据,希望通过外部数据快速挖掘数据的价值,弥补自身数据匮乏的问题,数据堂、九次方等数据服务公司获得了发展机遇。

2015年,大数据进入到监测阶段,通过数据大屏等形式,实现对业务的监测,这是大数据最先成熟的应用方向。对于政府、央企及大型国企而言,数据大屏、领导看板等数据展现应用是大数据最直接能够反映价值的方式。因此,海云数据、数字冰雹、帆软、思迈特等公司发展迅速。

2017年,大数据平台建设基本完善,单纯数据展现也很难满足企业的需求,大数据开始与业务场景结合,基于大数据实现对业务问题的洞察,呈现出百花齐放等局面,金融领域的精准营销和风控反欺诈,公安领域的刑侦破案,工业领域的故障预测预警等。

企业对业务场景的洞察,单纯靠简单的数理统计已经不足以满足,因此,出现了大量数据挖掘、数据建模的需求。AI建模平台、数据科学平台开始进入人们的视野,第四范式、天云大数据、九章云极等提供建模平台的公司成为焦点,但更多公司将AI建模平台内化成自身的能力,基于AI建模平台,形成解决方案,帮助企业客户落地大数据应用。明略数据、百分点、同盾科技、百融金服等公司在这一时期成长为行业内的明星公司。

2019年,大数据要从业务洞察进入到业务决策阶段,也就是说,由机器形成数据报表或者数据报告,业务人员进行决策,变成机器直接给出决策建议,让机器具备推理能力。例如,在外卖、出行场景,美团和滴滴的系统直接形成最佳调度方式,系统自动完成决策环节,将任务下发给骑手和司机。这种消费互联网相对常见的场景,将在产业互联网、企业业务场景中开始出现。

让机器具备推理能力,意味着NLP、知识图谱等认知技术的成熟,这也是为何2018年NLP、知识图谱成为市场的热点。数据驱动决策、数据驱动业务发展的企业新需求,必然会带动一批数据智能公司的兴起。

从这一刻开始,大数据行业进入到一个全新的阶段。之前的收集、监测和洞察阶段,大数据和业务场景的关系,更多是实现业务数据化过程,也就是通过数据去描述、跟踪业务的发展。到了决策阶段,大数据已经进入到业务智能化阶段,大数据开始对业务环节进行改造,依靠数据、算法模型来提升业务效率。

未来,随着技术更加成熟,大数据会从决策进入到最后一个环节行动,也就是业务重塑。很多执行环节是可以由机器来实现,但仍然有很多环节需要人参与其中,因此,人机协同会迎来迅猛发展,未来会诞生一批新数据公司。

02数据智能的定义及行业图谱

进入数据智能阶段后,整个行业呈现出几个态势:

第一,多技术融合。开源大时代,技术门槛越来越低,促使很多大数据公司具备了深度学习、NLP、知识图谱等原先被认为是AI技术的能力;从客户需求来看,为了指导决策,需要汇聚海量多源数据,其中必然会涉及到非结构化数据的处理,基于复杂网络的推理和决策,单一技术很难解决问题。

第二,中台的形成。在企业数字化转型进程中,传统企业需要具备互联网公司那样快速迭代升级的能力,基于数据驱动业务发展,这就需要建立一站式技术能力、统一的数据管理、快速配置开发业务的能力。以阿里巴巴为代表的中台模式给传统企业提供了一条道路,各类中台会在企业内部逐步形成。

因此,笔者对数据智能的定义是,基于中台、融合多种技术,利用数据解决企业客户的决策需求。

image.png

上图是2018年笔者对大数据行业图谱的划分,从底层的基础平台,到中间层的通用技术和数据服务,再到上层的行业应用。但在调研中,发现越来越多的企业在从一个细分领域向其他领域延伸,原先的划分方式已经不太适合数据智能领域,因此,我们对数据智能领域的行业图谱进行了重新划分。

image.png

数据智能领域核心分为两个细分领域,中台和应用场景。其中中台包含技术中台、数据中台和业务中台,应用场景则按照不同行业进行了划分。

技术中台主要是指帮助企业客户搭建技术中台的公司,从数据采集、数据处理、数据存储、数据分析等环节的所有工具及平台,包括基础平台、用户行为分析、BI&可视化、数据科学平台、NLP&知识图谱等。

image.png

数据中台则是指帮助企业搭建数据中台的公司,这里面有一类是提供数据服务的公司,另一类是帮助企业做数据治理、数据资产化的公司。

数据中台的价值是将数据资产化,实现不同体系ID账号的打通,为下一步数据应用夯实基础。

数据中台需要汇聚企业的内部数据、公开数据、线上数据和线下数据:内部数据包含企业的各业务系统中实时产生的数据,如CRM、ERP等系统,记录企业日常行为数据;公开数据主要是通过爬虫等方式抓取的数据,如电商网站商品信息、社交网站的用户评论等;线上数据指通过SDK等方式获取的数据,主要是移动设备上的用户行为数据、LBS位置数据等;线下数据指一类是通过WIFI、蓝牙探针获取的数据,另一类是公安、运营商、银联等高价值数据。

基于数据中台有三种应用方式:数据集,主要是数据标签、用户画像等;数据模型,融合了数据和算法,比如销量预测、风控建模等;数据应用,将数据能力和软件能力封装,形成最终数据产品,如选址、用户账户管理等。

image.png

业务中台是指基于数据和技术,结合行业应用场景,沉淀针对应用场景的模型及产品。业务中台具备业务属性,但本质是一些功能模块组件,企业基于业务中台可以快速封装出业务产品。

几乎不会有数据公司直接搭建企业的业务中台,大部分都是由技术中台和数据中台公司演化出来的。另一类是从行业应用切入,在大量服务垂直行业客户后,掌握大量场景需求后,逐步形成业务中台能力。

03数据智能的模式创新:从技术赋能到合作分成

大数据经历多年发展,一度出现数据交易等新模式,但因为涉及到用户隐私问题,这类模式受到很大限制。尽管与传统IT相比,大数据更加贴近业务场景,但兜兜转转一圈,最终还是回到传统IT的商业模式,提供解决方案或者标准产品License为主流。

进入到数据智能阶段,笔者认为,商业模式会发生变化,由原先提供解决方案为主的技术赋能,逐步会出现合作分成、联合运营的新模式,极大提升数据智能公司的天花板。

image.png

上图是典型的技术赋能模式,基于技术中台或者数据中台形成行业解决方案,服务头部公司。通过头部公司积累业务场景能力,形成最佳实践,赋能合作伙伴,通过合作伙伴服务其他公司。

过往技术赋能公司往往面向企业的单点问题,解决单场景需求。进入数据智能阶段后,企业的需求更加复杂,各部门协同效应越来越明显。单一场景价值度有限,多场景才能发挥更大价值。

例如金融信贷领域,营销与风控必须结合,单单解决风控问题,实际落地时效果非常一般,因为最初吸引的流量很大程度会决定风控水平。因此,风控前置、营销风控一体化成为金融客户的新需求。

image.png

合作分成会是一种全新的模式。数据、技术和应用场景结合,形成业务中台,利用业务中台赋能头部企业,和头部企业客户合作,帮助企业客户解决完整场景问题,实现与企业客户的合作分成。

业务模式由原先提供技术、产品、咨询能力输出,变成重视运营能力,数据智能公司成为企业的技术外脑。

这类模式目前已经在少数领域和公司开始执行,如金融领域的助贷业务,营销领域TalkingData、泰迪熊等公司帮助家电公司和手机厂商提升广告价值,媒体领域百分点和人民出版社共同运营的“党员小书包”等。

image.png

从技术赋能到合作分成,越贴近场景价值度越高。数据是兼具IT属性和业务属性,仅仅解决IT需求价值度远远低于业务需求,因为企业建设IT系统的目的是为了支持业务发展,企业数字化转型的目的也是为了支持业务快速发展,实现业务的精细化运营,对云计算、大数据、人工智能的投入都是为了这个目的。

解决业务需求需要深入到业务场景中,也就是需要数据智能公司越来越贴近场景,只有在场景中,数据才能发挥价值。从技术赋能到合作分成,正是代表着数据智能公司与场景融合得越来越紧密。

合作分成提升客户黏性,有利于数据智能公司立足行业。合作分成意味着数据智能公司深入到业务场景中。数据智能公司对客户应用场景理解能力已接近企业客户本身,远远超出其他供应商。

同时,合作分成代表着数据智能公司与企业客户深度绑定,企业客户选择这类数据公司会非常谨慎,基本需要一两年的考察期。因此,企业客户的替换成本大幅提升,轻易不会更换供应商。

合作分成会极大提升数据智能公司的天花板。合作分成意味着数据智能公司可以获得企业的业务预算,而不仅仅是IT预算,能够大幅提升数据智能公司在单一行业的天花板。

以消费金融为例,技术服务只占到整个市场的1%,而助贷业务可以占到10%,市场规模增大至原先的10倍以上。

同时,合作分成的业务延续性更强。技术赋能基本都是项目制的收费模式,随机性强、受企业预算限制。合作分成意味着只要业务继续进行,就可以持续按照最终利润和成效分成,业务持续性强,不受企业预算限制。

那什么样的数据智能公司有机会实现与企业客户合作分成的模式?

笔者认为,合作分成需要满足三大前提条件。

第一,做增量市场才能合作分成。做增量大于做存量,对企业客户而言,利润中心的价值大于成本中心。因此,帮助企业开拓新业务、提高原有业务的产能,才能够进行合作分成。帮助企业降低成本是无法合作分成的,因为本身存在很明显的天花板。

第二,需要搭建覆盖全场景的业务中台。覆盖全场景才能证明数据智能公司的价值,才能量化成果,基于可量化的成果,数据智能公司才能与企业客户进行合作分成。技术中台和数据中台都只能解决单场景或几个场景的问题,必须是业务中台能够实现全场景覆盖。

第三,具备运营能力。合作分成意味着数据智能公司要长期参与到业务过程中,具备业务运营能力,能够根据企业客户的需求,快速开发新产品及应用,不断迭代升级,满足企业的需求。


相关文档推荐

智能AI企业大数据中台建设方案.PDF

1744157579  10.51MB 69页 积分6

2025年中国人工智能计算力发展评估报告.PDF

1744103920  2.15MB 43页 积分5

大模型驱动的智能软件开发.PDF

1744103599 黄非 5.11MB 40页 积分6

大语言模型服务管理的实践.PDF

1744103522 马元元 8.6MB 27页 积分5

百度构建人机协同新范式的实践.PDF

1744103389 牛万鹏 2.72MB 33页 积分6

从智能营销到智能制造.PDF

1744070519  4.27MB 14页 积分0

浙江省智能计算产业链标准体系建设指南.PDF

1744026825  1.55MB 116页 积分6

质量大模型及其在接口测试场景下的实践.PDF

1744026767 李庆泉 2.18MB 21页 积分5

基于GenAI的混合云智能运维实践.PDF

1744026734 周彩钦 2.29MB 23页 积分5

相关文章推荐