如何搭建数据治理体系?

来源:人人都是产品经理 作者:成于念

针对于数据治理的定义,我们从狭义上去理解只是仅仅对于历史数据或者错误数据进行梳理调整。 国际数据管理协会(DAMA)给出的定义:数据治理是对数据资产管理行使权力和控制的活动集合,也就说数据治理并不是一个简单的行为动作,而应该是一个形成体系的管理。



《主数据驱动的数据治理:原理、技术与实践》一书中有详细提到过整个数据治理体系的搭建,个人觉得写的不错,拿来总结分享给大家。

首先我们需要明确数据治理体系的目标,各个企业进行数据治理的目的也无非为三个:

  1. 运营合规:运营合规这是整个数据治理的基础,也是数据质量提升的前提;

  2. 风险可控:风险可控是数据治理的手段,将不确定性变为可知可控的风险;

  3. 价值创造:价值创造是数据治理的结果,结果导向来验证整个数据治理是否有成果。

确定了数据治理的目标后,接下来的搭建工作就分为四个部分来执行,分别是:管理域、过程域、治理域、技术域、价值域。对于运营合规的目标,我们的首要工作就是搭建管理域的工作。

一、管理域的工作主要是确定战略、搭建组织、制定制度、明确规范

我们需要做到的是战略是各个业务部门都知悉明确的,组织应该是跨整个集团部门的治理委员会,制度与规范则重点明确数据标准,数据维护流程等。

对于风险可控的目标,我们主要是过程域、治理域、技术域三个方面进行发力。

二、过程域主要是方法论层面

要求在数据治理的过程中,需要形成分析-设计-执行-评估四个步骤。其实也类似于戴明环(PDCA)通过前期调研,设计落地,巡检,分析反馈结果形成闭环。

我们在数据治理的过程中,会发现一些问题。例如:需求不明确或者经常调整,数据清洗影响评估不清晰,清洗主责部门不明确等等。实际上通过过程域的步骤管控,能尽可能避免该类问题风险发生。

三、治理域是针对于治理范围进行的定义:主要分为主数据治理,业务数据治理和分析指标数据治理

那么我们认为数据治理的核心驱动仍然需要放在主数据,主数据作为基座数据80%时间需要对此进行梳理治理。同时配合各业务系统产生的业务数据进行准确性、及时性保障。



四、同样数据治理体系的工具也是尤为重要

我们在治理的过程中,需要对数据架构,管控平台,治理工具三方面进行投入。才能将数据治理工作事半功倍。

数据治理的目标是通过对数据资产的有效管控持续创造价值,价值域通过对治理结果的有效整理,通过构建具体化的数据产品,实现上述的价值创造。

五、数据治理的价值体系具体包括三个方面

  • 数据服务:通过数据的采集、清洗、导入,提升数据质量,确保数据的一致性。这部分体现着主数据治理的关键价值。

  • 数据流通:通过实现信息整合和分发机制,支持跨业务、跨部门、跨系统的信息流转和协同。这部分体现着业务数据治理的关键价值。

  • 数据洞察:通过消除数据内在的质量缺陷,明确数据之间的关联关系,帮助数据分析人员更好地理解数据,实现数据洞察。这部分体现着分析数据治理的关键价值。

最终,数据治理体系的搭建工作才能算完成,古人的“道法术器势”哲学思想理论显得尤为博大精深。


相关文档推荐

离散制造破局之道主数据管理平台重构.PDF

1742450737 詹慧超 4.6MB 37页 积分6

AI辅助编程真实测评与企业落地实践.PDF

1741936506 蒋志伟 10.17MB 37页 积分6

AI大模型技术在数据库DevOps的实践.PDF

1741935803 叶正盛 2.67MB 30页 积分6

DeepSeek大模型及其企业应用实践.PDF

1741743773 林子雨 9.39MB 144页 积分8

阿里云AI搜索RAG大模型优化实践.PDF

1741175482 欧明栋 0.79MB 28页 积分6

津药达仁堂数字化转型探索与实践.PDF

1741071203 叶辉 5.28MB 25页 积分6

DeepSeek 从理论模型训练到实践模型应用.PPTX

1740472320  16.17MB 71页 积分10

DeepSeek行业应用实践报告.PDF

1740471709 李祖希 9.38MB 110页 积分6

SelectDB实时数仓在智慧港口中的应用实践.PDF

1740034920  2.09MB 27页 积分5

大模型概念、技术与应用实践.PDF

1740034768 林子雨 5.57MB 134页 积分12

相关文章推荐