AI产品经理必备的常识及术语有哪些

来源:CIO之家的朋友们 作者:CIO之家的朋友

一、常见任务及当下经典算法

文本分类/意图识别:CNN / Bert / LSTM+Attention

实体识别:LSTM+CRF

中文分词:N-Gram / CRF / HMM

文本相似度:TF-IDF / BM25+Bert

文本摘要:Bert+Textrank

问答系统/机器翻译:Transformer+Bert / Seq2seq+Attention

情感分析:Word2vec+LSTM / CNN

二、常见知识点/术语

人工智能领域两类算法:基于统计的机器学习算法(Machine Learning) / 深度学习算法(Deep Learning)

人工智能三要素:算法、算力、数据

常用的框架:pytorch / sklearn / tensorflow / PaddlePaddle

数据标注:为模型训练提供学习语料的数据处理,一般为人工+系统相结合

预训练模型:用某个较大的数据集训练好的模型(给出了可使用的初始化参数),你可以利用它使用自有数据集进行训练并得到合适的模型参数

词向量:即将文字数字化,利用数学领域的向量表示单词/短语

语料:语言材料,提供给算法模型进行学习的基本知识

批处理大小:即训练的 batch_size

训练数据的训练次数:训练 epoch 数

学习率:即 learning_rate

词向量维度:网络中词向量的维度

各层网络卷积核大小:即 kernel_size

窗口大小:skip-gram 算法中的 window_size 参数

过拟合:在模型训练过程中效果较好但在测试样本中准确率较差,表现为模型过分依赖于训练语料,反之可以理解“欠拟合”

模型蒸馏:算法能够用小型的网络从微调过的文本分类模型中学习信息

蒸馏训练次数:蒸馏过程遍历蒸馏数据的次数

评估标准:准确率、召回率、F1、AUC、ROC、损失函数

监督学习:通过已有的训练语料完成模型训练,从而在测试样本验证模型已经学习到的能力

强化学习:将一个已经训练好的模型作为另一个任务的基础模型,降低成本


相关文档推荐

AI辅助编程真实测评与企业落地实践.PDF

1741936506 蒋志伟 10.17MB 37页 积分6

AI大模型技术在数据库DevOps的实践.PDF

1741935803 叶正盛 2.67MB 30页 积分6

DeepSeek大模型及其企业应用实践.PDF

1741743773 林子雨 9.39MB 144页 积分8

智海微言AIAgent应用产品.PDF

1741575533  2.07MB 37页 积分5

阿里云AI搜索RAG大模型优化实践.PDF

1741175482 欧明栋 0.79MB 28页 积分6

初始大模型 1.2大模型技术基础.PDF

1741175003 赵鑫 3.62MB 18页 积分5

人类对齐 5.1 人类对齐之基础.PDF

1741174427 周昆 2.71MB 21页 积分5

津药达仁堂数字化转型探索与实践.PDF

1741071203 叶辉 5.28MB 25页 积分6

DeepSeek 从理论模型训练到实践模型应用.PPTX

1740472320  16.17MB 71页 积分10

DeepSeek行业应用实践报告.PDF

1740471709 李祖希 9.38MB 110页 积分6

相关文章推荐